Didsbury CE Primary School

A booklet to help parents in supporting their children with maths.

Contents

Introduction

- "They didn't do it like that in my day!" p. 1
Addition
- Addition on a number line p. 3
- Compensating on a number line p. 5
- Expanded method p. 7
- Standard method p. 9
Subtraction
- Subtraction on a number line p. 11
- Complementary addition - number line \& written method p. 13
- Working towards a standard method - decomposition p. 15
- Standard method-decomposition p. 17
Multiplication
- Multiplication on a number line p. 19
- Grid multiplication - TU x U p. 21
- Grid multiplication - TU x TU p. 23
- Grid method, expanded method and compact method - TU x U p. 25
- Grid method, expanded method and compact method - TU x TU p. 27
Division
- Division on a number line p. 29
- Chunking on a number line p. 31
- Division by chunking p. 33
- Short compact division p. 35
Calculations in context p. 37
Improving your own Skills p. 39
Place value cards p. 41

"They didn't do it like that in my day!"

Do your children ask for help with their maths homework and start talking in a foreign language, using words like 'partitioning', 'chunking', 'grid multiplication'.....?

If so, you may feel the need for some translation. This booklet is designed to explain some of the methods used to teach calculation in schools following the introduction of the National Numeracy Strategy (NNS) in 1999.

Which is more important:

ental calculation.د

This will depend on the numbers involved and the individual child.
When faced with a calculation, no matter how large or difficult the numbers may appear to be, all children should ask themselves:

If I can't do it wholly in my head, what do I need to write down in order to help me calculate the answer?

When do children need to start recording?

The following table shows how some sort of recording is relevant throughout the primary years with mental strategies playing an important role throughout.

It is important to encourage children to look first at the problem and then get them to decide which is the best method to choose - pictures, mental calculation with or without jottings, structured recording or calculator.

Children attempting to use formal written methods without a secure understanding will try to remember rules, which may result in unnecessary and mistaken applications of a standard method.

Some of the methods explained in this booklet involve 'partitioning' and a set of place value cards are attached which can be pasted onto card and cut out (your child will show you how to use them).

ADDITION

Using an informal method by counting on in multiples of 10 with a number line
$T U+T U$
$86+57$

$$
\begin{array}{ll}
\mathbf{T U + T U} \\
\mathbf{8 6}+57 \longleftarrow & \begin{array}{l}
\text { number) on the number line. } \\
\text { Partition the smaller number } \\
57 \text { into tens and units and } \\
\text { count on the multiples of } 10 \\
\text { first and then the units. }
\end{array}
\end{array}
$$

Start at 86 (the larger

$86+57=143$

ADDITION

Using a number line to add too much and then subtract (compensate)
HTU + TU
$754+96$

ADDITION

HTU + TU $625+148$

Why switch to adding the units (least significant digits) first?

Expanded method: moving on from adding the most significant digits first to adding least significant digits first

Add most significant digits first: (in this example, hundreds)

Add least significant digits first: (in this example, units)

625	
+148	
700	$600+100$
60	$20+40$
13	$5+8$
773	

625

+148
13
$5+8$

$60 \quad 20+40$
$\frac{700}{773} 600+100$

Mentally add
$700+60+13=773$
$625+148=773$

ADDITION

Using a standard method

HTU + HTU
$587+475$

HTU + HTU
 $587+475$

$500+400=900$ then +100 which totals 1000 . Place this in the thousands column.
$587+475=1062$

SUBTRACTION

Counting up or counting back?

> TU - TU
> $84-56$

TU - TU
84-56

$84-56=28$

SUBTRACTION

HTU - HTU
954-586

SUBTRACTION

Working towards a standard method (decomposition)

HTU - TU
154-37

Why do you need to rearrange the numbers $50+4$ and rewrite them as 40 + 14?

The whole number is 154 . It is possible to subtract 7 but for this method I need to do one subtraction in each column. So I exchange one ten from the tens column for ten ones in the units column.

154-37=117

SUBTRACTION

Standard method (decomposition)

HTU - HTU
754-286

MULTIPLICATION

Introducing multiplication on a number line

TUXU
14×5

How is multiplication the same as repeated addition?

The number line helps me see each group of 5 clearly.
If I add 5 fourteen times, that is the same as 5 multiplied by 14 (5×14). I can make 14 individual jumps of 5 along the number line, or 1 jump of 5×10 and 1 jump of 5×4. Table facts will help me do this more quickly.

TU x U
14×5
The number line shows 5 multiplied by
14. This is equal to 14 multiplied by 5 (14 jumps of 5 on the number line).

Multiplication is repeated addition.

Using table facts to make bigger jumps is more efficient.
$14 \times 5=70$

GRID MULTIPLICATION

TU X U
14×5

TU X U
 14×5

GRID MULTIPLICATION

TU X TU
46×32
Isn't it difficult to multiply 40 by 30 ?

You've got to do a lot of calculations don't you get confused?

The layout of the grid helps me organise what I have to do. I like this method.

TU X TU

46×32

MULTIPLICATION

Grid method, Expanded method and Compact method
TUXU
23×8
What are the brackets for in the expanded method?

They remind me which numbers I am multiplying.
I also have to remember to line the numbers up as hundreds, tens and units.

I multiply the units first so I can carry forward any tens I need to!
This method is very quick but I have to remember to add on any numbers I carry forward.

TU X U
23×8
GRID METHOD

EXPANDED METHOD

COMPACT

METHOD
(short multiplication)

HTU
23
$\times 8$
$\frac{184}{2}$

20 multiplied by 8 equals 160 (2 $2^{\text {nd }}$ part product), plus the 2 tens equals 180.

The digits are put in the correct columns, to give the answer 184.
$23 \times 8=184$

MULTIPLICATION

Grid method, Expanded method and Compact method

TU X TU 46×32

TU X TU
46×32

GRID METHOD

x	40	6	
30	1200	180	1380
2	80	12	92
			1472

EXPANDED METHOD

The 4 part products are set out vertically underneath the calculation.	$\begin{array}{r} 46 \\ \times 32 \\ \hline \end{array}$	(40 x 30)
	1200	
	180	(6×30)
	80	(40 x 2)
Part products	12	(6×2)
totalled to give final product.	$\longrightarrow 1472$	

COMPACT

 METHOD(long multiplication)

$46 \times 32=1472$

DIVISION

Why are you adding on one line and subtracting on the other? And what has subtraction got to do with division?

$$
\begin{aligned}
& T U \div U \\
& 29 \div 3
\end{aligned}
$$

Introducing division on a number line


```
TU \div U
29\div3
```


There are 9 groups of 3 in 29 , with 2 left over.

DIVISION

Chunking on a number line

TU $\div \mathrm{U}$
$72 \div 5$

DIVISION BY CHUNKING

HTU \div U

$256 \div 7$
(A)

How many groups of 7 in 256 ?

Total the numbers of groups of 7 .
(10) $+(10)+(10)+(6)=36$
(C)

256

$$
\begin{gathered}
\frac{-210}{\frac{-210}{46}}\left(\begin{array}{l}
7 \times 30) \\
\frac{-42}{4}
\end{array}(7 \times 6)\right. \\
\\
\begin{array}{c}
\text { Subtract one } \\
\text { large chunk of } \\
210(7 \times 30) .
\end{array}
\end{gathered}
$$

36 groups of 7 have been subtracted and there is 4 left over.
$256 \div 7$ = 36 r4

SHORT COMPACT DIVISION

HTU \div U
 $471 \div 3$

Q: What is the largest number of

CALCULATIONS IN CONTEXT

All the methods in this booklet support children in using their mental and written skills to solve calculations. Children need to be encouraged to use the method that they understand and can use confidently.

It is important that children are able to choose the most appropriate method for the calculation. For example:

4003-3998

These numbers are very close together and so counting up on a number line (actual or imagined) would be the most efficient method.

$200 \div 4$

Dividing by 4 is the same as halving and halving again. As it is easy to halve 200 and easy to halve 100, this would be the most efficient method.

Using and applying appropriate skills is very important, when calculations are needed to solve a problem.

4 C.DS at £2.99 - how much altogether?

$£ 2.99$ is almost $£ 3.00$ and so round up, multiply, then adjust:
$4 \times £ 3.00=£ 12.00$
$£ 12.00-4 p=£ 11.96$

Improving your own skills

Many adults think that they aren't very good at Maths. If you think it's time that you did something about your own Maths, there are lots of sources of help.

- There are several websites designed to help students of all ages find out about different topics in Maths:
- The BBC site (www.bbc.co.uk) has excellent sections for revision at KS2 and KS3 (www.bbc.co.uk/revisewise), and the GCSE and Skillswise sections also give worked examples of mathematical problems'- particularly useful when your child doesn't understand her homework and you don't either......
- The DfES0 site for parents (www.parentcentre.gov.uk) is the best source of information about teaching in schools, and how to support your child's learning at home.
- The Parents Online site (www.parentsonline.gov.uk) gives information about children's education, and how parents can support children's education - particularly using the Internet.

